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We obtain rigorous upper bounds for the critical temperature associated with 
second-order phase transitions of the two-dimensional spin-I BEG model for 
real values of K and D coupling constants and for J/> 0. We use some correla- 
tion equalities and inequalities to show the exponential decay of the two-point 
function characterizing the disordered phase. 
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1. INTRODUCTION 

In this paper we obta in  exponential  decay of spin-spin  correlation func- 
tions (and consequently an upper bound  for the critical temperature) for 
the two-dimensional  spin-1 Blume-Emery-Griff i ths  (BEG) model for real 
values of K and D coupling constants and for J~>0. 

This model (1) has played an impor tant  role in the study of tricritical 
points. In its most  general form the model is described in a d-dimensional 
lattice A by the Hami l ton ian  

- H a = J  E S i S j + K  Z S ~ S ] + D  E S~ 
I i i -  J l l  = I I i i -  111 = 1 i ~  a 

+h3 E SiS j (S i+Sj )+h  E Si 
I I i - J l l  = 1 i ~  A 

(i) 

J Departamento de Matem;itica-lCEX-UFMG, Caixa Postal 1621, 30161-970 Belo Horizonte 
MG, Brazil. e-mail: gbraga @ mat.ufmg.br. 

z Departamento de Fisica-ICEX-UFMG, Caixa Postal 702, 30161-970 Belo Horizonte MG, 
Brazil. 

3 e-mail: sabino @ fisica, ufmg. br. 
4 e-mail: sbarreto@ fisica, ufmg. br. 

819 

0022-4715/94/0800-0819107.00/0 �9 1994 P lenum Publ i sh ing  C o r p o r a t i o n  



820 Braga et  al. 

Each spin S i occupies a site at a square lattice, taking values 0, -I-1, and 
interacting with a nearest-neighbor interaction. Coupling constants are 
interpreted as follows: h stands for the magnetic field and D for the crystal 
field (or single-ion anisotropy) strength, J is the bilinear (or dipolar) inter- 
action, K is the quadrupolar interaction, and h3 is a third-order spin 
interaction. The BEG model ( I )  is the most general model with three states 
and nearest-neighbor interaction on undirected bonds. For h3 = K =  0 the 
model reduces to the Blume-Capel model 12"3) whose mean-field solution 
for h = 0 shows a tricritical point. For h = J =  h 3 = 0 the model maps into 
a spin-l/2 model 14). Another spin-l/2 Ising model version is obtained in the 
limit of D ~ + oo (or K ~ + or), when the state S,. = 0 is suppressed. For 
K =  3J ,  D = - 2 z J  ( z  is the coordination number), and h = h~ = 0, one gets 
a 3-state Ports model with coupling 2J. (51 

The most important version of the model, connected with the phase 
separation of helium mixtures, is obtained for h 3 = 0 and was first studied 
by mean-field techniques by the authors who named the model, cl) The 
Hamiltonian (1) was also studied in connection with ternary mixtures (6) 
and lattice-gas models. ~71 Also, spin-3/2 extensions of the BEG model have 
been considered. ~8-1~ More recently, a mean-field solution of the general 
spin Blume-Capel model was presented cl~) where it is shown that for any 
value of the spin a multiphase point is found at T =  0 from which different 
ordered phases spread out when the temperature is increased, terminating 
at an isolated critical point. 

More sophisticated methods than mean-field approximation have been 
used to study the BEG and the Blume-Capel models. High- and low- 
temperature series expansions have been derived for the Blume-Capel 
model.(~2.,3) Monte Carlo studies have been reported ~4' ~s) for the spin-1 
model and also for the spin-3/2 model, t~~ Within the real space renor- 
realization group many studies have been considered for the Blume-Capel 
model t~6"17) and for more general model)  5"~s-2~ The values of the 
exponents for the tricritical points obtained by those different methods can 
be found in Tables IV-VI of ref. 21. 

We now discuss three recent works on the spin-1 BEG model, where 
h = h 3 = 0 ,  J~> 0, and K, D are real numbers. Mean-field results have shown 
a rich phase diagram, t22) Three ordered phases, namely the ferromagnetic, 
the ferrimagnetic, and the antiquadrupolar phases, occur and are separated 
by first- and continuous second-order transition lines. A multitude of multi- 
critical points is present in the phase diagram as well as phase reentrances. 
A renormalization study for the same model t231 in d = 2  and d=3.05 
dimensions differs from the mean-field results in two aspects. The ferri- 
magnetic phase is not present and there is no reentrance phenomenon. 
On the other hand, a more recent prefaced renormalization group calcu- 
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lation t24) shows that in two dimensions a ferrimagnetic phase and a 
disordered-ferromagnetic--disordered reentrance structure do not occur but 
are present in three dimensions. In ref. 25 a Monte Carlo renormalization 
group technique has been applied to the three-dimensional system for 
values of K/J= -0.5 and -1 .5 .  For these ratio values this Monte Carlo 
study agrees with the mean-field results concerning the presence of a ferri- 
magnetic phase (when K/J= - 1.5) and reentrances. Further Monte Carlo 
simulations t26'27) indicate that the disordered-ferromagnetic~lisordered 
reentrance structure occurs in three but not in two dimensions. 

Now we make a brief review of the literature on upper bounds on 
the critical temperature. For Ising and multicomponent spin systems, 
upper bounds for the critical temperature have been obtained by showing 
exponential decay for the two-spin correlation function for temperatures 
T >  To, upper .~2s-3~ Using correlation identities and Griffiths and Newman 
inequalities, beyond mean-field upper bounds were obtained for the 
spin-l/2 Ising model. 13~) Improved bounds obtained from simple methods 
(as in ref. 31) have been systematically-obtained in recent years, t32' 33) 

In the present work, we adapt the methods of ref. 31 to the BEG 
model, where h = h 3 = 0 ,  J>~0, and K, D are real numbers. Based on 
correlation identities and on the positivity of correlations (see Proposi- 
tion A1 in the appendix), an iteration procedure implies exponential decay 
of the two-spin correlation function. This procedure is similar to the one in 
ref. 29 and 31, the difference being that we do not recover the two-point 
function after the iteration starts. It can be generalized, in principle, to any 
model for which Griffiths' first inequality holds. As far as we know, ours is 
the first rigorous study of the ferromagnetic-disordered phase boundaries 
of the BEG model in a two-dimensional lattice for K and D as negative as 
one wishes as long as J is not too large (J~>0). 

In the following section we will prove Theorem 1, which is the mathe- 
matical tool used to obtain the upper bounds. We make use of two correla- 
tion inequalities, proven in the appendix. One of them is a generalization 
of Griffiths' first inequality for the BEG model with J1> 0, K and D real, 
and the other one gives upper bounds for correlations containing even 
powers of spin variables. The methods used to prove Theorem 1 can in 
principle be generalized for any model for which Griffiths' first inequality 
holds. In Section 3 we discuss the obtained phase diagrams for K/J= O, 
-1 .0 ,  -1 .5 ,  -3 .0 ,  - 3 . 5  in the l/(zJ) versus -D/(zJ)  plane. In our case 
the coordination number is z = 4. We discuss the general behavior of the 
phase diagrams for any value of K/J ranging from positive to negative 
values and present figures showing our curves together with the mean-field 
phase diagrams from ref. 22 for the five above-mentioned values of K/J. 
Finally in Section 4 we make some concluding remarks. 
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2. RIGOROUS RESULTS 

Let A stand for the 2-dimensional lattice volume [ - L , L ] x  
[--L,L]c~Z 2. Given any FcA,  we define the following Hamiltonian 
in F: 

- H r = J  ~" SiSj+K ~, S~S.~+D ~" S~ (2) 
I i i -  JU = I t l i - -  j l l  = 1 i E  F 

where i, j e  F. Coupling constants K and D are real-valued, while J>~ 0. The 
spin variables assume the values S i=  0, + 1. When F =  A, we obtain the 
Hamiltonian for the two-dimensional Blume-Emery-Griffiths (BEG) 
model with free boundary conditions, which will be assumed in the sequel. 
Expected values are defined by 

(.)r=_ Els} "e -Hr 
Zr 

where the sum is over all spin configurations in F. Here Zr is the nor- 
malization factor, given by 

ZF = E e-Hr 

We will prove that: 

Theorem 1. (a) Given J~>0, K such that ercoshJ-l>~O and 
D e  R, there exist positive functions C1 = Cj(J, K, D) and m~ = m](J, K, D) 
(independent of x and y) such that 

whenever 

( SxSy) A ~ fie-m1 IIx- yfl (3) 

2eO+ 3K sinh 3J 
< 1 (4) 

1 + 2e ~ 

and [ Ix-  YII >/3. 

(b) If eXcoshJ - 1 <0,  the same statement holds (with new func- 
tions C2 and mE) whenever 

2 e n [  3K/sinh 3 sinh j ) ]  
l + 2 e  n+3K 3 e K s i n h J + e  ~- 3 J  4 <1 (5) 

To prove Theorem 1, we need Lemmas 1 and 2 stated below. To prove 
them, we need some definitions and simple identities. 
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Given F c A  and ieF,  we define: 

Def in i t ion  1. N; is defined as Ni = {jeF\II j- iLI  = 1}, and z~ as 
the number of sites j ~ N~. 

Defini t ion 2. Given i~F, we define F,=F\{ i} .  

D e f i n i t i o n  3. The energy of the spin at site i (with respect to the 
set F) is defined as 

- u , - J  y. S,S +K Z S S +DS  
I I J -  i[I = I I I J -  ill = 1 

where the sums are restricted to j ~  F. 

D e f i n i t i o n  4. Let M =  {mj}j~A be a multiindex, where each mj is 
integer-valued. M is even (odd) if Z mj is even (odd). We define 

s M= H s;"' 
iEA 

S M is even (odd) if M is even (odd). 

Using that S~"=S~ z and that S~ "+1=S~ for n =  1, 2 .... and defining 
the functions A(J ,K)=A and B(J ,K)=B as A - e K s i n h J  and B -  
(e K cosh J -  1 ), it is simple to verify the following identities: 

2 2 exp(JS, Sj + KS ~ S~) = 1 + AS, Sj-t- BS , S j (6) 

e-n'=e~ I-I (1 +ASiSj+ 2 2 BSiS j )  (7) 
{J\ l lJ-  ill = 1 } 

y" e-N'=I+2eD(I+~MCMSM ) (8 '  
&=O, +I 

~_~ Big-Hi= 2e ~ ~ CNS u (9) 
Si=O, • N 

The sum appearing in (8) is over all even multiindexes M supported on the 
set Ni, for which rn~= 1 or 2, while the sum in (9) is over all odd multi- 
indexes N obeying the same restriction n i=  1 or 2. The coefficients 
CM = CM(J, K) (same for CN) are products of integer powers of the func- 
tions A(J, K) and B(J, K). Their explicit form depends on the number of 
nearest neighbors of the spin variable &, which will be integrated out [see 
Eq. (A1) in appendix]. 
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Lemma 1. Given FcA,  i~F, and the Hamiltonian (2), we have: 

(a) For J>~0, D e N ,  and Ksuch  that e K c o s h J - - l ~ > 0  

Zri~ 1 (10) 
Zr "~ 1 + 2e ~ 

(b) For J/> 0, D e R, and K such that e x cosh J -  1 < 0 

Zr, 1 
~< (11) Zr 1 +2e  D+''K 

ProoL To prove the lemma when e K cosh J -  1 >/0, we use identities 
(6) and (8) to develop the partition function Zr as follows: 

Z r = Z  e-nr= ~'(Ze-I4 ' )e-nr ,  
{s} IS} s, 

{ S }  S~= _--4- 1 I I J - - i l l  = 1 

= Y' / [ l+:2e~ 
{ S }  M / - J  

where the sums Z '  are over spin variables Sk, k e Fi, and the products are 
over j e  F, IIJ-ill = 1. The inequality (I0) becomes clear if we observe that 
each coefficient CM is nonnegative whenever eXcosh J - 1  >/0 and that 
each sum 

' S M e -  Hr, 

{sl 
is also nonnegative, by Proposition A1 (see the appendix). 

On the other hand, if eKcosh J - 1  <0,  we develop the partition 
function as follows: 

Z r = s  e-Hr= ~'(~e-H')e-14ri 
Is} Is} s, 

= ,"'(,-,-e~ 1-, e S,) 
{ S }  I I j - i l l = l  S , =  1 I I j - i l l = l  

= ~ '  {1 + 2 e ~  I-] eKS~)[ 1+ ~M CM(J'O)SMI} e-Hr~ 
{ S } [[ j  - ill = 1 

>/(1 +2e  I~ ~.'e -nr, 
Is} 
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In the fourth equality, we have used identities (6) (with K = 0 )  and 
(8) (with D replaced by D + ~, KS]). The inequality follows from Proposi- 
tion AI (see the appendix), using that CM(J, 0)~> 0 and that K <  0 when 
e K c o s h J - l < 0 .  I 

R e m a r k .  The upper bound for the ratio of partition functions can be 
improved. Defining K * - - - l o g ( c o s h  J) and C * - C M ( J ,  K*), we rewrite 
the above expansion, pulling out the exponent K -  K*, with coefficients C*.  
The new upper bound is 

Zr,< 1 

Z r  "~ 1 + 2e~ + min{B, 0 })'-' 

L e m m a  2. Let ~ be an even multiindex supported on a set P c  F 
for which n,~<3 for all k~P .  Suppose that i and x ~ F \ P ,  that IIi-xll >/2, 
and that z~ ~< 3. Then there exists an even multiindex .~V', supported on a set 
Q c P u Ni, and a site j ~ (P w N~)\Q, nj <~ 3, such that 

(S ,  SJtSx)r<~ C(J, K, D ) ( S j S " S . . ) r ,  (12) 

where the coefficient C(J, K, D) is given by (4) for e K cosh o r -  1 >/0 and by 
(5) for eXcoshJ  - 1 <0.  

Proof. Using identity (9), we obtain that 

( S , S ' " S x ) r =  Z r , ~  2eOCN( SN S . S ~ ) r  ' 
IF N 

where the multiindexes N have their support on the set Ni (see Defini- 
tion 1). From Proposition A1 in the appendix, we know that correlations 
(SUSanS., -) r, are nonnegative. Let (SUm~xS~Sx) r, be the maximum among 
all of them. By symmetry, Sum""S ~# must be odd, otherwise the correla- 
tion function (SU='xS'aSx)r, is identically zero. Therefore, there exists 
jE  P w N i, a set Q c P w N i \ { j  }, and an even multiindex Y ,  supported on 
Q, such that 

< SNmaxSJlSx>F= < SjS'KSx>F~ 

As remarked earlier, the coefficients CN are nonnegative whenever 
B = e K cosh J -  1 >/0. Under this condition, we get the upper bound 
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where 

I A  if . . =  1 7f  

~ CN= 2A + 2AB if z i = 2  

3A+6AB+3AB2+A 3 if Z i = 3  

It is simple to verify that 3A + 6AB + 3AB 2 + h 3 = e 3K sinh 3J and that it is 
the largest possible value for the sum ~ CN.. Therefore, after using 
inequality (10), we obtain 

(SiS'~S")r<~(2e~ ( S j s ~ S ~ ) r ~ "  1 + 2e t~ (13) 

On the other hand, if etCcosh J - 1  <0,  some coefficients CN will be 
negative. In what follows, we argue how to get the bound (12) when zi = 3. 
Similar steps can be done for z~= 1 and z i=2.  From Eq. (AI) (see the 
appendix), we observe that the sum multiplying the coefficient AB, which 
is negative, has six parcels. Three of them will be skipped because they give 
a negative contribution for the coefficient. The other three will be appended 
to the sum of the AB 2 coefficient (with three parcels, too), generating terms 
like 

2 2 2 . r162 2 J'r (SkSIS Sx AB (SjSkStS Sx)r , -A Inl >r, 

Using inequality (A3) and that IB I ~< 1, it is easy to see that terms like the 
one above are negative. Therefore, we get the upper bound 

( S,S'~t Sx) r <~(~r 2eO y'.max{ C~, O} ) ( SjS'~Sx) r i 
N 

where the sum ~ max{CN, 0) is bounded above by 3A + A 3. For the other 
cases we obtain 

Emax{CN,0}_< {A if z , = l  
N "~ 2A if z~=2 

It is clear that 3A + A3 is the largest possible value for the above bounds, 
and that 

3A+A3=3eXsinhJ+e3K(S inh3J 3si4__h .J ) 

Using inequality (11), we get the claimed upper bound 

(SiS'~Sx)r 

l+2eD+3xt_3e2eD [- K " hJ | sm + e  3•(sinh3J 3sinhJ)l(SjS.~.S~) . r, <~ 
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Proof of Theorem 1. Without  loss of generality, we assume y = 0 .  
The proof  is by iteration of inequality (12). First, we arrange things in 
order to apply L e m m a  2: 

ZAo S.,.) 
( S ~ 1 7 7 1 7 6 1 7 6  Ao 

-- ZA~ ~, 2eOCu( S'vS,.) A o (14) 
1 Z A  N 

where the sum is over  odd multiindexes, as remarked earlier. By Proposi-  
tion A1, the expected values (SUSx)a, are nonnegative. Let (SUm"~S.,.)ao 
be the largest among  the expected values (SUSx).o appear ing in the sum 
(14). F rom Lemma  1, it is clear that  

ZA0 ~< 1 
Z a 1 + 2 e  cD+ 4 min{K'~ 

Taking  into account  that some coefficients CN could be negative, it is also 
clear that 

( ) l + 2 e  (~176 ~ m a x { C B ,  0} (SNm"xS.~)Ao 
" , N  

is an upper  bound for (14). 
As in the proof  of L e m m a  2, (SN'axS,_)Ao must be of  the form 

(SiS-aSx)Ao for some i t  N o. Here J#  is an even multiindex supported on 
the set N o . Therefore, the two-point  function is bounded above by 

( SoSx) A <<. C'( S i S " S x )  Ao 

Now we start  the iteration process, working with the correlation 
(S~SaS.,.)Ao, for which we apply L e m m a  2, with F =  Ao. Observe that  in 
this case z~ = 3 but in general zi ~< 3. We apply Lemma  2 a number  of times 
at least equal to I lxl l -  1, after which it may  happen that  the site i over 
which the iteration is done is exactly the site x, not allowing, therefore, the 
application of L e m m a  2. We have 

(SoSx),~ <~ C'(C(J, K, D))  I1-'11 - ' (S jSaS.~)r  

<. C'(C(J, K, D))- '  (C(J, K, D)) II'ql 

which is equal to . 

Ce - " Ilxll 

whenever condition (4) or condition (5) is satisfied. In the above second 
inequality, we use 1 as an upper  bound for the correlat ion functions. I 
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3.  P H A S E  D I A G R A M S  

In this section we show some phase diagrams corresponding to 
distinct constant-(K/J) cross sections in the temperature, 1/(4J), versus 
the crystal field, -D/(4J), plane. Our  curves give upper bound values 
to the critical temperature associated with a ferromagnetic order-disorder  
second-order phase transition. For  each constant-(K/J) cross section plane 
1/(4J) versus -D/(4J)  we fix the factor -D/(4J). Then we determine 
numerically the value 1/(4Jo) which makes the coefficient given by expres- 
sion (4) or (5) of Section 2 (depending upon whether e x cosh J - 1  i>0 or 
eKcosh J - - I < 0 ,  respectively) equal to one. For  values of 1/(4J) greater 
than 1/(4Jo) we have that the appropriated coefficient (4) or (5) is strictly 
less than one. This means exponential decay behavior for the two-point  
function and characterizes the ferromagnetically disordered phase, c29) Here 
1/Jo represents an upper bound for the ferromagnetic critical temperature. 
We also obtain numerically the value co such that for -D/(4J)>co 
we have exponential decay for any value of 1/(4J). For  K/J=O, -1.0, 
- 1.5, - 3.0, and - 3.5 we have, respectively, co = 0.75000 + 0.00005, 
0.26895 -+_ 0.00005, 0.15748 + 0.00002, -0 .19225 + 0.00005, and -0 .313018 
+0.000002. For  the sake of comparison we show in Figs. 1-5 our ferro- 

magnetic upper bounds (dash-dotted curves) together with the corre- 
sponding mean-field (MFA)  ones from ref. 22. In the M F A  curves dashed 
and solid lines indicate, respectively, first- and second-order phase 

I /4J  

0 6  

04 

02  

0.( 

d 

,,ork 

f "~  

i 

i 
i 

i l 

o':., o',, o.'6 ' '  0.75 

- D/4 J 

Fig. 1. Phase diagram in the temperature (l/4J) versus the crystal field (-D/4J) plane when 
K/J=O. Our ferromagnetic upper bounds are represented by the dash-dotted curve. The 
predicted mean-field phase diagram ~22) is also shown with the disordered (d) and ferro- 
magnetic (f) phases. Dashed and solid lines indicate, respectively, first- and second-order 
phase transitions. 
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I/4 J 

0 6  

04  

02  

QO 

Fig. 2. 

" "  ~- . . .  present work 

i , f ~ i . ~ ,  i , i " ' 

- 0.I 0.0 0.1 0.2 027  

-D/4J  

The same as Fig. 1, except that K / J  = - 1.0. 

I/4 J 
0.95 

080 

060 

Q4C 

0,2C 

" 'x---  )resent work \ 

d 

. - ' "  ~MFA 

eJ"J~ "" i QQ ~ l i  
,' i 

75 -0.50 -0.25 0.00 0.16 

- D / 4  J 

The same as Fig. 1, except that K / J =  - 1.5 and now the mean-field phase diagram 
presents also ferrimagnetic (i) and ant iquadrupolar  (a) phases. 

822/76/3-4-6 
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I/4J 

15 

0.9 

0.6 

03 

o._o  

~ - p r e s e n t  work  

\ .  

i 

il 

I 
- 2  -i 

~FA 

/ 
i 

-0.19 
-D/4J 

Fig. 4. The same as Fig. 3, except that K/J= -3.0. 

transition. As each figure shows, curves from the present work fall off 
sharply toward a zero-temperature point as - D / ( 4 J )  approaches the above 
co values from the left. 

4. C O N C L U D I N G  R E M A R K S  

Our methods are dimension independent. We have applied them to 
the two-dimensional BEG model. In two dimensions, all the richest aspects 
of the phase diagrams are present and the calculations are simpler than in 
higher dimensions. 

Although we can conclude that disordered-ferromagnetic-disordered 
reentrance curves cannot exist in those portions of the phase diagrams 
where the two-point correlation function decays exponentially, that is not 
enough if we wish to get a similar conclusion for the disordered-anti- 
quadrupolar-disordered reentrance lines [those boundary phases appear 
within the mean-field (22) and Monte Carlo renormalization group calcula- 
tions (d=  3)(261-1. We believe that one is still left to prove the uniqueness 
of the Gibbs measure in those regions. 
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I /4J 

1.7 

1.5 

O~ 

O.C 

Fig .  5. 

% 

% 

~ -  present work 

\ 
d \ 

- 2  -0 .31  
- D / 4 d  

T h e  s a m e  as  F ig .  3, e x c e p t  t h a t  K/J = - 3 . 5 .  

We intend to develop this approach for the three-dimensional model, 
where similar questions can be formulated. We also intend to use low- 
temperature expansions to get lower bounds on the critical temperature. In 
this way, one could localize the possible parameter values (and therefore 
low and high temperature portions of the phase diagrams) for which ferro- 
magnetic reentrance curves are prohibited. 

Correlation inequalities as proven in the appendix can be generalized 
for not necessarily ferromagnetic models (see ref. 34, where "comparison 
inequalities" have been proved). This opens the possibility to apply our 
methods for disordered systems. 

A P P E N D I X  

For the sake of completeness, we obtain the identity (9) for the case 
ni = 3, with i = 0 being the site at the origin. We also enumerate the nearest 
neighbors of 0 as l, 2, and 3. Developing the product (7) and integrating 
over the spin variable So, we obtain 
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E S o  e - HO 

So=O,_+! 

= 2 e D [ , 4 ~ i  S i d - A 3 S I S 2 S  3 

+ AB(S, + S, + + + S3S + S,S ) 

_t_AB2(S 2 2 2 2 2 2 1 IS2S3 + S~$3S2+ $2S3S I) (A1) 

Griffiths' first inequality, as well as Proposition A2 stated below, can be 
generalized for even (in each spin variable) perturbations of ferromagnetic 
models (for a generalization of Griffiths' second inequality, see ref. 34). 
Here, we prove them for the BEG model (2): 

Proposition A1. For any multiindex M =  {mi}i~r, Griffiths' first 
inequality 

(SM)F>~O (A2) 

holds for real values of K and D and for J>t 0. 

ProoL To prove inequality (A2) for real values of K and D, it is suf- 
ficient to show that 

N r _  ~, SMe- Hr 
Is} 

is nonnegative. We first expand the exponential 

in power series. Therefore, N r will be a superposition of terms in the 
following type: 

{s} " ' i~r / 

whose coefficients are nonnegative, because J>/0. Now, if all exponents 
n~ ..... nk are even, then the last sum is clearly nonnegative. On the other 
hand, if at least one exponent, say n~, is odd, then by changing the spin 
variable St to - S ,  we conclude that the sum is zero. I 

Proposition A2. For any given multiindex M =  {rnj}j~ r supported 
on a set A c F and for any i6 A, the following inequality holds: 

( S ~ S M ) F <  ( S M ) F  (A3) 
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ProoL We have 

(s2sM)F=Z'-F {{S}\Si= +1} {{S}\S,= --I} 

while 

,( ( s M ) F = - ~ -  r ~ SMe-Ur + 
{ { s } \ s , =  + t} 

+ y, SMe - Hr) 
{ { s } \ s ~ = o  

On the other hand, 

Sme -Hr 
{ { s } \ s , =  - 1} 

S g e -  nr = ~ ~ S g e -  nr, 
{{s}\s,=o} {s} 

By Proposi t ion A1, the last sum is 'nonnegat ive .  This proves inequality 
(17). 1 
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